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Magnetic properties of weak itinerant electron ferromagnets
below the Curie temperature
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Faculty of Science, Himeji Institute of T:chnology, 1479-1 Kamigoricho, Akogun, 678-12
Japan

Received 27 December 1991

Abstract. We discuss how to treat the magnetic properties of the ordered phase of
the weak itinerant electron ferromagnets using a method based on solving a differential
equation for the tansverse component of the magnetic susceptibility. We show that
the simple analytic continuation of the paramagnetic solution does not give the stable
solution in the ordered phase below T, The low-temperature solutions have an ambiguity
comresponding to various choices of initial conditions. We discuss how o choose the
unique stable solution at a finite temperature below Te.

1. Introduction

The self-consistently renormalized spin fuctuation (SCR) theory has been quite suc-
cessful in explaining and predicting many magnetic properties of weak itinerant elec-
tron magnets {(Moriya 1985). Experimental investigations have made it possible to
test the theory and as a result the quantitative validity of the theory has now been
well established. In the ordered phase, however, there remains a difficulty. Because
of the presence of the static uniform magnetization, the spin fluctuation spectrum
becomes anisotropic. Therefore we have to treat both the fluctuations simultaneously
maintaining the restriction coming from the rotational invariance. A naive treatment
sometimes leads to the fictitious first-order transition (see, e.g., Murata and Doniach
1972). In the framework of the SCR theory, a straightforward way is to introduce two
coupled equations for longitudinal and transverse spin fluctuations. However, one
has to solve complicated integro-differential equations (Moriya 1985, Lonzarich and
Taillefer 1985). It is, however, not easy to handle them and to see the behaviour
of the solution in some limiting cases. This is the reason why the external field
dependences have not yet been fully discussed.

In order to derive the equations of the SCR theory, the present author introduced
an interesting idea, ie. that the total spin fluctuation amplitude remains constant
(Takahashi 1986). The spin fluctuation amplitude consists of the sum of the thermal
and zero-point spin fluctuation amplitudes. In this treatment the effect of the tem-
perature dependence of the zero-point spin fluctuations, which had been previously
neglected, were taken into account, Not only was this equation derived for the SCR
theory, but various interesting relations, which are satisfied by parameters character-
izing the mature of spin fluctuations, were also calculated. These consequences were
supported by later experimental investigations (Yoshimura er al 1987, Shimizu ef al
1990).
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In the same paper, a method to treat the ordered phase properties was proposed.
It was noticed that the longitudinal and transverse components of the magnetic sus-
ceptibility are related to each other by differentiation with respect to the magneti-
zation. It was proposed that the basic equation should be regarded as an ordinary
differential equation for the static transverse magnetic susceptibility. The approach
is conceptually simple and practically very easy since one needs only to treat a single
equation and both the transverse and longitudinal susceptibilitics are automatically
determined by solving the differential equation. As an application, it was possible to
derive analytically the interesting magnetization process of weak itinerant ferromag-
nets at the critical point:

H x M® (1.1)

where H and M are the external magnetic ficld and saturation magnetization, re-
spectively. However there still remains a difficulty in the ordered phase concerning
the ambiguity of the initial condition. In the previous work, an artificial assumption
was used in order to define the fluctuation amplitude for negative values of the sus-
ceptibility and to solve the equation starting from the fictitious non-magnetic state
(Takahashi 1986, Nakayama and Moriya 1987).

The purpose of the present paper is to give a possible solution to this difficulty.
We first try to solve the problem by analytic continuation of the paramagnetic solution
with respect to the temperature below T, It seems natural to assume that the static
susceptibility is analytic with respect to the temperature T in the presence of the
external magnetic field. We will, however, see that the solution thus obtained does
not give a reasonable stable state. This unexpected result seems to have an interesting
consequence. As another approach, we note that each solution corresponding to the
various initia} conditions results in a different form for the free energy as a function
of the uniform magnetization. This enables us to choose the initial condition by
impasing a condition on the behaviour of the free energy.

In the next section we briefly review the framework of the spin fluctuation theory.
In section 3, we discuss a method of analytic continuation of the paramagnetic solu-
tion. In section 4, we show how to deal with the initial value problem of our basic
differential equation. The conclusions and implications of this study are presented in
the final section, section 5.

2. Theoretical framework

In the following, we briefly review our theoretical framework for the description of
the magnetic properties of itinerant electron ferromagnets (Takahashi 1986). We
start with the assumption that the amplitude of the local spin fluctuation amplitude,
{§?), remains almost constant with increasing temperature or an externally applied
magnetic field. In the case of the single band Hubbard model, {§2) can be expressed
in terms of the charge density correlation function whose temperature dependence is
characterized by the ratio kg T/U or kg T'/W, where U and W are the intra-atomic
Coulomb interaction and the bandwidth, respectively. Because the temperature range
of interest is of the order of T, the temperature dependence of {§?%} can be practically
neglected. Analogous arguments will be applied in more general cases with band
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degeneracy. The mean square spin fluctuation amplitude consists of the sum of
contributions from the thermal, zero-point and saturation moments:

(8%) = (8%);p + (87)un + m? /4 @1
where m represents the saturation magnetic moment per magnetic atom in units of
gpg. From the fluctuation—dissipation theorem, the thermal and zero-point compo-

nents, {5%),, and ($?),,, are related to the dynamical magnetic susceptibilities of the
longitudinal and transverse components as follows:

(5% =3 5 [ SE2n(@)imx*(q,) + 2Imx*(g,0)
q

=z L [ Elimx(a0)+2mxt@el]. @)
q

In weak itinerant ferromagnets, the spin fluctuation spectrum in the small ¢,w
space is well represented by the following form:

zz — Xéz wrz(Q)
I x™*(g,w) = 7 + g?/k2 w2+ T ,(q)?
1
Im x* (g,0) = —2X0____wTa(a) @.3)

1+¢%/riw?+T . (q)
with

T..i9)=Toq(¢®+«3)  Ti(q)=Ta(d*+ %)
X&% = Ny/2Ar? Xt = Ny/2AxE

where x&* and xg are the longitudinal and transverse static magnetic susceptibilities,
I'; and A are parameters which characterize the spin fluctuation spectrum and N,
is the number of magnetic ions in the crystal. Since spin waves are limited to the
very small wavevector region and its phase volume is very small, we can neglect their
contributions. We here introduce two characteristic energy scales Tj, and T, by

To=Togd/2n  Ty=Adh (g5 = (67"/vy)'/%) 2.4)
where gg is the zone boundary vector for the unit volume v, per magnetic ion. The
temperatures T, and T, give the measure of the distribation of the spin fluctuation
spectrum in the energy space and the wavevector space, respectively, which correspond

to the exchange constant in insulator magnets. The zero-point and thermal fluctuation
amplitudes can be written in the following form:

(8% = (8%)n(T2) - %{zwz) +22(3)}

(520, = THT () + 2T (W) 25)



3614 Y Takahashi
with
Z(=y—-¢'In(1+1/y)/2+1n(1 + v)/2~y/2

T =n' [ deetlnu-fu-p(]  w=sy/r+ )

S=T/T, t=T/T. @6)

where {u) is the digamma function and ¢ is the reduced temperature. We intro-
duced in equations (2.5) and (2.6) the reduced reciprocal static magnetic susceptibil-
ities of the transverse and longitudinal components, y and y,, by

y=rl/ed v, =«/gh.

From the rotational invariance of the system, y and y, can be expressed in terms of
m and h (an external magnetic field, ie. h = gug H):

1 A 1 &h
_ h - or . @1
V= Tam VT %T.0m @7

Now by imposing the conditions, y = 0 and y, = G at T =T, (¢t = 1), we can
determine the constant term, {S?),.(T.), in equation (2.5):

(8%} = (8")p(TL) = %c(n*)“ = %ﬂ" fun dz 2%{In 2° - §2° — (%)}
c= EW(;T)IBP(HS)C(MS) = 0.3353630... 2.8

where I'(z) and {(z) are the gamma and zeta functions, respectively. Now with the
use of equations (2.5) and (2.8), our basic assumption (2.1) is finally written in the
form: '

H2(w,) +22(w)) - {T(y,) + 2T(y)} + e(n")* {3 - 50?} =0
=0l ty. 2.9)

The second line of equation (2.9) is easily derived from the defipition (2.7). We
introduced the relative saturation magnetization ¢ by m/m,_ and m, by
m? 15T,

4~ T,
which gives the saturation magnetization in the ground state as shown later. Our
proposal is to regard equation (2.9) as an ordinary differential equation for y with
respect to . In the paramagnetic phase (¢ > 1), we have a well defined limit, ie.
y, = y for o = 0, and we can determine the initial value of y at ¢ = 0 by solving

Z(y)/2—T(y) + c(n*)* =0. (2.11)

Starting from this solution, we can determine y(o,t) and y,{o,t) as a function of
o for any finite value of o. On the other hand, in the ordered phase a difficulty
arises because we do not have such a well defined limit. The values of y and y,
are, in general, different for finite o, but a single equation cannot determine both of
them simultaneously. For example, when we choose y = 0, we can only determine
o8y /8o as a function of o with the use of equation (2.9). But we can fix neither o
nor o8y /8o uniquely.

e(n*)? (2.10)
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3. Analytic continuation of the paramagnetic solution

In order to overcome this difficulty of the initial value problem, we try, at first, to
assume that y(o,t) is analytic with respect to the temperature t for a finite value
of o. In the presence of the finite static magnetization, physical properties will vary
smoothly with temperature and no singularities as a function of the temperature
will appear. Therefore it seems to be natural to assume the analyticity of y(o,1)
and to consider that the solution for ¢ < 1 can be simply obtained by the direct
continuation of the paramagnetic solution below T,. We then need derivatives, y{!} =
dy/8t,...,.y™ = 8*y/adi",... of y(o,1,) around a fixed temperature ¥, under
the presence of finite o. Although we can choose any temperature %, as a reference,
ty = 1 will be the most appropriate one for the reason of fast convergence. Then
we can construct the value of y(o,t) for t < 1 by the following Taylor expansion
around t = 1:

y(o,t) = )j(‘ ~ (o, 1). )

Any higher derivatives of y( o, t) at finite o are, in principle, evaluated by solving
differential equations derived by differentiating equation (2.9) with respect to ¢. For
example the first and second derivatives, y(!> and y(?), are determined by solving

(32w~ 252D (622 4 {12 + 2 - 5D 2000}

&z Z

x 31 = aT(yz)

9T (y)
at

(5700 -252) (+547) + (37700 - Z52) (o755 +°)

+2

k4 &

* { §Z'(y,) +2(3) - 3";%) -2 2 e

32T(y) 3*T(y,) { dyD *T(y)
a2 T2 8y, ot (U do +y(1))+ “Byot v
(G-2)

The initial conditions of 8y/3t, and 8%y /8t* at o = 0 are obtained by the solutions
of the equations:

(- 20) 22T _,

_ 9®T(y,)
- 8t +2

(e~ 23 G+ (G2 750) (3)

_9T(y) , 9T (y) (9y
=32 T2 555 ('é?)' 33)
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Figure 1. Temperature dependence of the reciprocal mapnetic susceptibility y and its
derivatives, y' = dy/dt, and y"” = 8?y/9¢* in the paramaguetic phase for n = 0.3.

Temperature dependencies of y, 8y /8¢ and 8?y/8t* at ¢ = 0 numerically deter-
mined by equations (2.11) and (3.3) are shown in figure 1 for n = 0.3, Near the
critical temperature, we see that the higher derivatives y{™ for n > 2 become very
large. With increasing ¢ they rapidly decrease. In the previous expressions, derivatives
of T(y) were calculated by

T 2 8T :

3?) = ‘n—ff)(y) a(:y) ?—z{yfil)(y) + 1217 (y)}
8T 1 82T 19T

2 y(zy) L 1@y 3y§i) = BS") tz{yfﬁz)(y)-i-nzfgrz)(y)}
*T(y) _ 2,8T(y) ,  8*T(y) yaT(y) ¥ T (y) | 7* 1o
B T 1V Tar YV YT ) -w ay? +FI§' (v 69

where we defined J™ () by

n-l
W= [1 a2 v}

-1

n 1
IA(y) = f dz z" {———- —-— - w"(u)}
0 u
u=z(y/n’ +2%) /1. 3.5)
At the critical point (1 = 1), for small values of & these functions behave as follows:
y= Ag? ) = Bo? v® = P 4 co? (3.6)
with
5¢(n*)? ]2 10v5e(n*)? 4 gD
= B e = =3In*I; (0
[01(24-\/3) (16 + 7V5)C} (o7 ]
@ _ 9+2V5 B? c=__665 1.4 210(0) + 189(0)} — 2B
% = 5 EToA Gravmc 1RO+ 120} - 28]

C, = nn3/4.
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For finite o, we have numerically solved equations (2.9) and (3.2) for several
values of temperatures starting from the initial values determined by equation (3.3).
Higher order derivatives y(®) (n > 3) can be evaluated in the same manner. In
this paper we estimated y(™)(o, 1} up 10 n = 5 by numerical differentiation from 2
knowledge of y(o,¢), ¥'(o,t), and y"(o, ) for several values of ¢ (see the appendix
for details).

With the use of these derivatives y(")(o,1) we can now extend our solutions
below T.. Our results suggest that even and odd higher derivatives have negative and
positive signs, respectively. It then follows that higher order terms in equation (3.1)
for ¢ > 1 cancel with each other and the convergence is good. In contrast, for
t < 1, all the higher order terms contribute additively and the convergence of equa-
tion (3.1) is comparatively slow, especially as we approach the ground state. To see
the behaviour of y(o,?) for { < 1, we evaluate equation (3.1) up to the fifth order
for 7 = 0.3. As long as y is very small, we found that it is already a very good
approximation. We show in figure 2, the i-dependence of y(o,t) for several values
of z = o2. From the figure, we see a clear upturn in behaviour as ¢ decreases.

#10 ¢
3.0 —r———————

0.0
0.0 0.+ 0.8 i.2 1. 6

Figure 2. ‘Temperature dependence of y(o,t) below T, extrapolated from the para-
magnetic solutions for several values of o2 and 7 = 0.3.

As for the ground state (f = 0), the general solution of equation (2.9) is simply
obtained as follows if we assume Z{y) = vy justified for small y {hereafter we assume
this relation for the ease of comparison with the analytic expression):

y=2e(n"){o? - 1} + £o~3 37

where £ is an arbitrary constant determined from the initial condition. In our pre-
ceding paper (Takahashi 1986), we assumed £ = 0 considering that otherwise equa-
tion (3.7} will give a divergent v as o — 0. Equation (3.7) then gives the solution
o =1 at T = 0 K, which justifies equation (2.10) for the saturation magnetization
in the ground state. It is easy to see that a free energy corresponding to the negative
£ is higher than the free energy with £ = 0. On the other hand, although positive
£ gives the lower free energy, it does not give a stable minimum value. In figure 3,
y( o, t) plotted against  in the ground state is shown. The figure shows the upward
deviation of caiculated y(o,0) from y,(o,0) = 2¢(n*)*(z — 1), showing ¢ of the
solution constructed by equation (3.1) is finite. We further found that we can fit the
calculated y(o,0) with equation (3.7) by assuming £ = 4c(n*)?/3 (see figure 3).
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Figure 3. o2-dependence of the ground-state solution, y(o,0) for n = 0.3: a, with
£ =4dc{n*)*/3; b, with £ = (3/5)>%4c(n*}*/3; and c, with £ = 0. Open circles are
cvaluated by equation (3.1) up to the fifth onder from the paramagnetic solutions.

This value of £ is very large and we cannot satisfy the condition y(o,0) = 0 for any
finite value of o. It corresponds to the condition y =y, at t =0 and o = 1.

4. Magnetization below T,

The general solution of our first-order differential equation contains a parameter
which generally depends on temperature. We have so far implicitly assumed that this
constant is analytic with respect to the finite reduced temperature i. Therefore the
parameter £ in equation (3.7) in the ground state, for example, would be uniquely
determined. However what we found in section 3 is simple analytic continuation of
the paramagnetic solutions with respect to the temperature at finite o does not lead
to a favourable solution at low temperature. This finding is very interesting but our
problem still remains unsolved. From the stability condition of the free energy, we can
anyway rastrict the range of o. For example, in the ground state, by differentiating
equation (3.7) with respect to o, we find the minimum value of y(c,0) for a given
positive value of £:

/5 1/5
A HC
Yemin = 2¢(n*) {3 FEEDT 1 at o = pprT . 4.1)
In order to satisfy y = 0, we must have y,_;, <0, and we obtain the condition:
572 “\4 1/2
£< (g) 4—‘“'—(;-’-)—- o> (g) =0.77459.... @2)

This condition can be easily generalized for the case of finite temperatures. We see
that condition (4.2) corresponds to the free-energy stability requirement, the positive
curvature of the free energy. In other words, we have the following condition:
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dy/Bx > 0 for y = 0, or from equation (2.9) we have
() <o aty=0

o =3 (1- Z) = 2 - o - (nymy ey

I/qt’f’
€ = f dz z%{log 2° — 12® — w(2%))}. @.3)

In order to determine the unique solution, we particularly note the fact that if
we know the o-dependence of y(o,t), we can construct free energy as a function
of o by using the relation ¥y = h/o and integrating h with respect to o. For each
initial condition, we can thus find the corresponding free energy as a function of o.
If we assume y = y, at z = z,, we can, in principle, evaluate any higher derivatives
™y /8z" (x = o?) with the use of equation (2.9). From the thermodynamic relation
of the normalized free energy 8 f(o,t)/8c = h, we see that f{o,?) is related to y
by

13f(a,t) _

e 80 4
Let the o dependence of f(o,t) be expanded around o = o, = ,/Z5:
oty = fot filo—o) + 2o — o)+ o a4 . @5)
then coeflicients f,, are given by

] 39y
i = VoY f2=2303_:+y0 fazr(zxoa 31T 3 8:1:)
4 ,8% 3%y

f4 '1:03 3+4 03 2+3x (4‘6)

In these expressions, 8"y /dz™ stands for the derivative of y at ¢ = z;, We
cannot solve equation (2.9) beyond the stable solution with y > 0 since we have to
deal with the fluctuation amplitudes for negative y. However, from equation (4.5)
we can analytically extend our solution to the unstable region. In order to determine
z,, We now assume 8f/8o = 0 at the origin o = 0, expecting the o2-dependence
of the free energy there. Then by introducing g(x,,%) by

g(xp, 1) = 10 gi =y —Fot fo /By — fazg + - 4.7)

it follows that the zero of g(z,t) determines x,. Up to the fourth derivative of
f(o,1), g is explicitly given by
3 2%y

&2 'y 4
2 — ——rr—
glz,t) =2z 322 3% 3.3 4.8)
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As a simple example, we see from equation (2.9) that g(x) in the ground state
(t = 0) is given by

9(z) = 10{y; — 2¢(n*)*(z ~ 1)} @.9)

From equation (4.9), we easily see that the squared magnetization x, for finite y, is
given by z, = 1 4 y,/2¢(n*)4, which is equivalent to £ = 0 in equation (3.7). For an
illustration of this procedure at finite temperature, we plot g(,t) in equation (4.8)
as a function of z for various temperatures ¢ for n = 0.3 and y,/2¢(n*)* = 0.05
in figure 4. For a given temperature ¢, we evaluate x, from the zero of g(«, ). The
result is shown in figure 5 as curve a. We show ¢-dependence of o2 in figure 6. It
should be noted that the finite y, is necessary at finite temperatures. If y = 0, we
cannot define derivatives, 3"y/8z", for n > 1 because 9"T(y)/Iy" diverge as
y — 0. Care must be taken here that curve a in figures 5 and 6 is the magnetization
under the static external magnetic field, and this is the reason curve a exceeds one
at low temperature. By solving equation (2.9) starting from x, on curve a, we can
obtain the squared saturation magnetization x at y = 0. The result is shown as curve
b in figure 5. The magnetization process for the higher external magnetic field is
calculated in the same way.

X162
20|
1.0l
Ry A A .
X "\ao 10
o \ .
ok 08 \0s 104 o2\
=201

Figure 4. z-dependence of the function g{z,t) defined in equation (4.8) in the text for
yo = 0.05 x 2c(n*)*.

Near the critical temperature, it is hard to determine the precise value of the
magnetization at y = 0 using this method. In our scheme, we first estimate the
zero of g(z,t) corresponding to the finite y. Then we solve equation (2.9) to
obtain the value of x for y = 0. As we approach to the critical point, we need an
increasingly more accurate value of x, because a slight difference in x for finite y
results in a large difference in z as y decreases. This circumstance is clearly seen if
we solve equation (2.9) starting from various initial conditions as shown in figure 7
for t = 0,95, for example. From the figure we see that solutions starting from
different values of x, at y = 0 rapidly converge to nearly the same value of y as y
increases. The reason that the = value for y = 0 becomes smaller than the stability
limit, o*(t)Z, around ¢t = 0.93, as shown in figure 7, seems to come from the fact
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Figure 5. Temperature dependence of the saturation magnetization, o. The curves a
and a’ correspond 1o the zero of g(z,t) for yo /2c(%*)* = 0.05 and 0.01, respectively.
Curve b is obtained by solving equation (2.9) slarting from the point (zp, yo) of curve a.

02

0.0 1 1

00 05 0ot
Figure 6. Temperature dependence of the squared saluration magnetizatiotr, o2, Curves
a and b correspond to the zero of g(z, t) for yo /2¢(n*)* = 0.05 and 0.01, respectively,
‘The broken curve represents the stability condition, «*(¢)2, of the free energy given in
equation (4.3).

that the zero of equation (4.8) slightly underestimates the value of z;. From the
behaviour of the ratio, z,/a*(%)%, for ¢ < 0.9, we expect the precise value of z, to
behave a8 g~ 1.5 x o (1) for £ ~ 1.

This difficulty around the critical point, however, does not seem to be serious
for comparison with experiments from the following reason. Experimentally it is also
very difficult to measure the temperature dependence of the saturation magnetization
of weak itinerant ferromagnets especially around the critical region. Magnetization
at zero-field is determined by extrapolating the Arrott plot (M2-H /M plot) to the
H{M = 0 limit. This js only justified when the linearity of the plot is good. How-
ever, because we expect the behaviour y o z? near the critical point, we cannot
determine the precise magpetization from this extrapolation procedure. The mag-
netization process around small ¥ and o region is also very sensitive to the sample
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0.0 1 1
0.0 Q005 y OO

Figure 7. Dependence of the magnetization process an the initial condition for ¢t = 0.95.
Curves a, b and ¢ represent solutions of equation (2.9) starting from z/e*(#)? = 1.2,
1.5 and 1.8, respectively at y = 0.

quality. Therefore the reliable quantity to be observed experimentally is the magneti-
zation under the finite external field. If comparison is made at finite y, the problem
of the sensitive initial condition is not so serious. Curve a’ in figure 5 shows the
t-dependence of o for smaller y value, y,/2¢(n*)* = 0.01, We can use curve a’ as
an approximate solution under a finite external field. The solution of equation (2.9)
passing through this point does not cross the y = 0 line because of the slight relative
error of x at finite y.

As shown earlier we can evaluate the magnetization curve starting from various
initial conditions. Most of these states are not true stable states, and they real-
ized when various relaxation processes to lower energy states are for some reason
prohibited. The effect of the presence of solutions with various initial conditions is
particularly conspicuous around the critical region of the appearance of ferromag-
netism, where we have y ~ 0 around T = 0 K and various relaxation processes
become ineffective. A slight difference in the initial condition appears in a magni-
fied form at low temperature. All the solutions, however, asymptotically tend to the
vnique lowest energy solution as we increase the magnetization by applying the exter-
nal magnetic field. This behaviour is clearly seen in the ground state, equation (3.7):
as we increases o, y(o,0) approaches the unique solution y{o,0) = 2¢(n*)*(c*~1)
irrespective of our choice of £ value.

5. Conclusions

In the present paper, we discussed the ordered phase properties of itinerant electron
ferromagnets. We first discussed the problem by straightforward analytic continuation
of paramagnetic solutions with respect to the temperature. We found that these
solutions do not directly continue to the stable solutions below 7,,. Based on this fact
we pointed out a possibility that solutions with various initial conditions are actually
realized in the ordered phase. We then proposed a method by which to find the most
stable state among these states. All the other solutions, although they have different
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magnetizations for the weak external ficld, tend to the unique stable solution as we
increase the magnetization by applying an external magnetic field.

We emphasize the importance of the degrees of freedom concerning the initial
condition. Even if we fix the equation, we are still left with a choice of initial
conditions. We would like to point out here a possibility that the existence of solutions
with various initial conditions is related to the metamagnetic behaviour associated
with the peculiar form of the Arrott plot at low temperature widely observed in
nearly ferromagnetic materials around their critical concentration of the occurrence
of the ferromagnetism such as TiBe, (Acker e al 1981) and Y(Co-Al), (Sakakibara
et al ). In these compounds the longitudinal magnetic susceptibility shows divergent
behaviour at some field strength around the metamagnetic transition. If we solve
equation (2.9) starting from a slightly smaller value of x than the precise one towards
smaller z, the solution will become unstable (i.e. y, = 0) beyond a certain  value
near the critical temperature (y = 0). If we interchange z- and y-axes in figure 3,
curve a looks like an observed peculiar behaviour. Because we need y = 0 around
T = 0 K from the earlier argument, we only expect metamagnetic behaviour just
around the critical concentration of the ferromagnetism.

Our approach shows a clear contrast with conventional approaches based on the
expansion in terms of the small magnetization or small spin fluctuation amplitudes.
We usually assume the linearity of the Arrott plot as given from the beginning. The
slope of the plot is an independent parameter related to the curvature of the electronic
density of states at the Fermi level. On the other hand, our approach is based on
an equation for the transverse magnetic susceptibijlity and the Arrott plot is obtained
as a consequence of the theory. The slope of the Arrott plot is determined instead
from the nature of spin fluctuation spectrum in g¢,w space. The spin fluctuation
spectrum determines all the magnetic properties. In this sense our approach is more
like the situation in the localized moment limit where ail the magnetic properties are
characterized by the parameter of the spin Hamiltonian. The difference lies in the
energy scale of the spin fluctuation spectrum and the existence of the large zero-point
spin fluctvation amplitude, which are new characteristic features of itinerant electron
magnets,

Appendix. A numerical method to evaluate higher derivatives of y

Instead of directly evaluating higher derivatives y(™)(o,1) for 3 < n, we numerically
evaluate them from the values of y(®)(a,t) evaluated at several values of ¢. For a
given function f(?), let us define following functions:

F(h) = 47(1+ h/2) - 3;(1 +h) - 3F(1)
G(hy = 2L ER/2) ;2'5511 + k) — (1)
H(h) = 8f(1+h/4)—6f(1+1/2) + f(1+h)—3/(1)

h%/16
Then the derivatives of f(¢) at ¢ = 1 can be estimated by

- 3
f,(1)=4F(h/2; F(h)_l_hé_ﬁfmu)_l_m
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8G(h/2) - G(h) —8G(h/4) _ h®

7 «(s)
3 555 (+

f”(l) =

) =2H(R/2)- H(h) + %%;f('i)u) e

In this paper we have estimated y®), y(® and y®) from this formula by assuming
f(t) = y"(o,t) and h = 1 for y® and y*), and A = 1 for y{®). We suppose that
relative accuracy will be maintained. We have checked the validity of the results by
evaluating summation (3.1) up to the fifth order and comparing it with the value of
y( o, 2) directly obtained by solving equation (2.9).
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