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J. Phys: Condens Malter 4 (1992) 3511-35624. Printed in the UK 

Magnetic properties of weak itinerant electron ferromagnets 
below the Curie temperature 

Ymhinori Blahashi 
Faculty of Science. Himeji lnstitute of lkchnology, 1479-1 Kamigoricho, Akogun, 678-12 
Japan 

ReccNed 27 December 1991 

&trpcL We discus how lo Veal the magnetic pmpenies of the ordered phase of 
the weak itinerant electron ferromagnels using a method based on solving a differential 
quation for the transMme component of the magnetic susceptibility. We show that 
the simple analytic oontinuation of the paramagnelic solution d m  not give the stable 
solution in the ordered phase below T,. The low-temperature solutions have an ambiguity 
corresponding lo vdrious choices of initial mndiliolls. We discuss how U) choose the 
unique stable solution at a finite temperature below T,. 

1. Introduction 

The self-consistently renormalized spin fluctuation (SCR) theory has been quite suc- 
cessful in explaining and predicting many magnetic properties of weak itinerant elec- 
tron magnets (Monya 1985). Ewperimental investigations have made it possible to 
test the theory and as a result the quantitative validity of the theory has now been 
well established. In the ordered phase, however, there remains a difficulty. Because 
of the presence of the static uniform magnetization, the spin fluctuation spectrum 
becomes anisotropic. Therefore we have to treat both the fluctuations simultaneously 
maintaining the restriction coming from the rotational invariance. A naive treatment 
sometimes leads to the fictitious first-order transition (see, e.g., Murata and Doniach 
1972). Io the framework of the SCR theory, a straightforward way is to introduce two 
coupled equations for longitudinal and transverse spin fluctuations. However, one 
has to solve complicated integro-differential equations (Monya 1985, Lonzarich and 
Billefer 1985). It is, however, not easy to handle them and to see the behaviour 
of the solution in some limiting cases. This is the reason why the external field 
dependences have not yet been fully discussed. 

In order to derive the equations of the SCR theory, the present author introduced 
an interesting idea, Le. that the total spin fluctuation amplitude remains constant 
@lahashi 1986). The spin fluctuation amplitude consists of the sum of the thermal 
and zero-point spin fluctuation amplitudes. In this treatment the effect of the tem- 
perature dependence of the zero-point spin fluctuations, which had been previously 
neglected, were taken into account. Not only was this equation derived for the SCR 
theory, but various interesting relations, which are satisfied by parameters character- 
izing the nature of spin fluctuations, were also calculated. These consequences were 
supported by later experimental investigations (Yoshimwa er aI 1987, Shimizu ef al 
1990). 
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3612 Y Takahashi 

In the same paper, a method to treat the ordered phase properties was proposed. 
It was noticed that the longitudinal and transverse components of the magnetic sus- 
ceptibility are related to each other by differentiation with respect to the magneti- 
zation. It was proposed that the basic equation should be regarded as an ordinary 
differential equation for the static transverse magnetic susceptibility. The approach 
is conceptually simple and practically very easy since one needs only to treat a single 
equation and both the transverse and longitudinal susceptibilities are automatically 
determined by sohrmg the differential equation. As an application, it was possible to 
derive analytically the interesting magnetization process of weak itinerant ferromag- 
nets at the aitical point: 

H K M '  (1.1) 

where H and M are the external magnetic field and saturation magnetization, re- 
spectively. However there still remains a difficulty in the ordered phase concerning 
the ambiguity of the initial condition. In the previous work, an artificial assumption 
was used in order to define the fluctuation amplitude for negative values of the sus- 
ceptibility and to solve the equation starting from the fictitious non-magnetic state 
pkahashi  1986, Nakayama and Moriya 1987). 

The purpose of the present paper is to give a possible solution to this dficulty. 
We first try to solve the problem by analytic continuation of the paramagnetic solution 
with respect to the temperature below T,. It seems natural to assume that the static 
susceptibility is analytic with respect to the temperature T in the presence of the 
external magnetic field. We will, however, see that the solution thus obtained does 
not give a reasonable stable state. This unexpected result Seems to have an interesting 
consequence. As another approach, we note that each solution corresponding to the 
various initial conditions results in a different form for the free energy as a function 
of the uniform magnetization. This enables us to choose the initial condition by 
imposing a condition on the behaviour of the free energy. 

In the next section we briefly review the framework of the spin fluctuation theory. 
In section 3, we discuss a method of analytic continuation of the paramagnetic solu- 
tion In section 4, we show how to deal with the initial value problem of our basic 
differential equation. The conclusions and implications of this study are presented in 
the final section, section 5. 

2. Theoretical framework 

In the following, we briefly review our theoretical framework for the description of 
the magnetic properties of itinerant electron ferromagnets (%!ahashi 1986). We 
start with the assumption that the amplitude of the local spin fluctuation amplitude, 
(S2), remains almost constant with increasing temperature or an externally applied 
magnetic field. In the case of the single band Hubbard model, (S2)  can be expressed 
in terms of the charge density correlation function whose temperature dependence is 
characterized by the ratio kBT/U or kBT/W,  where U and LV are the intra-atomic 
Coulomb interaction and the bandwidth, respectively. Because the temperature range 
of interest is of the order of Tc, the temperature dependence of (S2)  can be practically 
neglected. Analogous arguments will be applied in more general cases with band 
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degeneracy. The mean square spin fluctuation amplitude consists of the sum of 
contributions from the thermal, zero-point and saturation moments: 

(s’) = (s2),, + ( S 2 ) t h  + m2/4 (2.1) 

where m represents the saturation magnetic moment per magnetic atom in units of 
gpB. From the fluctuation4ssipation theorem, the thermal and zero-point compo- 
nents, (S2),h and (S2),, are related to the dynamical magnetic susceptibilities of the 
longitudinal and tramverse components as follows: 

In weak itinerant ferromagnets, the spin fluctuation spectrum in the small q,w 
space is well represented by the following form: 

with 

rzz(q) = r o q ( q 2  + xt)  rL(q) = r o q ( q 2  + .:I 
xgZ = No/2AxZ x,’ = No/2,&c: 

where xi” and x i  are the IongitudinaI and transverse static magnetic susceptibilities, 
ro and A are parameters which characterize the spin fluctuation spectrum and No 
is the number of magnetic ions in the crystal. Since spin waves are limited to the 
very small wavevector region and its phase volume is very small, we can neglect their 
contributions. We here introduce two characteristic energy scales To and TA by 

To = I’,,qi/2r TA = (qe = ( 6 ~ ~ / u , , ) “ ~ )  (24) 

where qB is the zone boundary vector for the unit volume U,, per magnetic ion. The 
temperatures To and TA give the measure of the distribution of the spin fluctuation 
spectrum in the energy space and the wavevector space, respectively, which correspond 
to the exchange constant in insulator magnets. The zero-point and thermal fluctuation 
amplitudes can be written in the following form: 
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with 

q3 = Tc/To t = TIT, (2-6) 
where +(U) is the digamma function and t is the reduced temperature. We intro- 
duced in equations (2.5) and (26) the reduced reciprocal static magnetic susceptibil- 
ities of the transverse and longitudinal components, y and yn, by 

Y = n f / d  Y, =E:/&. 

From the rotational invariance of the system, y and y, can be expressed in terms of 
m and h (an external magnetic field, Le. h = g p B H ) :  

(2.7) 

Now by imposing the conditions, y = 0 and y, = 0 at T = T, ( t  = l), we can 
determine the constant term, (S2)sp(Tc), in equation (2.5): 

where r(i) and C(z) are the gamma and zeta functions, respectively. Now with the 
use of equations (2.5) and (2.8), our basic assumption (2.1) is finally written in the 
form: 

f{Z(y,) + ~ Z ( Y ) )  - {T(Y,) + ~ T ( Y ) }  + c(11*)~{3 -50') = 0 

a y  Yz = U- + Y. au (2.9) 
The second line of equation (29) is easily derived from the definition (27). We 
introduced the relative saturation magnetization U by m/m, and mp by 

(2.10) 

which gives the saturation magnetization in the ground state as shown later. Our 
proposal is to regard equation (2.9) as an ordinary differential equation for y with 
respect to U. In the paramagnetic phase (1  2 l), we have a well defined limit, Le. 
yz = y for U = 0, and we can determine the initial value of y at U = 0 by solving 

Z ( Y ) / ~  - T(Y) + ~ ( 1 7 " ) ~  = 0 .  (2.11) 
Starting from this solution, we can determine y(u, l )  and y,(u,t) as a function of 
U for any linite value of U. On the other hand, in the ordered phase a difficulty 
arises because we do not have such a well defined limit. The values of y and y, 
are, in general, different for fmite U,  but a single equation cannot determine both of 
them simultaneously. For example, when we choose y = 0,  we can only determine 
u a y / a u  as a function of U with the use of equation (2.9). But we can fix neither U 

nor d y / a u  uniquely. 
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3. Analytic continuation of the paramagnetic solution 

In order to overcome this difficulty of the initial value problem, we ny, at first, to 
assume that y(a,t) is analytic with respect to the temperature t for a finite value 
of (I. In the presence of the finite static magnetization, physical properties will vary 
smoothly with temperature and no singularities as a function of the temperature 
will appear. Therefore it seems to be natural to assume the analyticity of y(u,t)  
and to consider that the solution for t < 1 can be simply obtained by the direct 
continuation of the paramagnetic solution below T,. We then need derivatives, y(') = 
ay/at,. . . , y(") = amy/atn,. . . of Y(U, to) around a fixed temperature to under 
the presence of 6nite (I. Although we can choose any temperature to as a reference, 
to = 1 will be the most appropriate one for the reawn of fast convergence. Then 
we can construct the value of y(o,t) for t < 1 by the following 'Bylor expansion 
around t = 1: 

Any higher derivatives of y( U ,  t )  at finite (I are, in principle, evaluated by solving 
differential equations derived by differentiating equation (29) with respect to t. Fa 
example the first and second derivatives, y(') and yc2), are determined by solving 

0.2) 
The initial conditions of ay/at, and a2y/8t2 at (I = 0 are obtained by the solutions 
of the equations: 

(3.3) 
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-re L % m p t u r e  dependence d the redpmeal magnetic susceplitility and its 
derivatives, y' = aytat, and y" = a2yfaP m the paramagnetic phase for 11 = 0.3.  

Temperature dependencies of y, a y / a t  and a 2 y / a t 2  at U = 0 numerically deter- 
mined by equations (211) and (3.3) are shown in figure 1 for q = 0.3. Near the 
critical temperature, we see that the higher derivatives y(") for n 2 2 become very 
large. With increasing t they rapidly decrease. In the previous expressions, derivatives 
of T(y)  were calculated by 

ayz ( Y )  ayat 
-- )--- T ~ ~ ) ( ~ )  (3.4) 
a 2 v y )  2 ( a ~ ( ~ )  ~ T Y )  Y W Y )  ~2 a w y )  + 

at2 --- t - at + y m  t ay t 2  ay2 t 4  
+ -- 

where we detined h m ) ( y )  by 

1 
U 

1t) (y)  = 1"' dz  z" [ -L U2 - U3 - $'f(u)} 
0 

U = z(y/q2 + 22)/t. 

y = Ao4 

(3.5) 

(3.6) 

At the critical point (t = I), for small values of U these functions behave as follows: 
y(2) = y p  + CO2 U(') = Bo 2 

with 
2 

10fic(q')4 [ - -3q4$)(0)]  1 B = ( 1 6 + 7 & ) q  

9 + Z 6  B2 c =  '4 [,,+{2dl)(o) + e)(o)) - 2 4  
1 t 2J5m 

y p  = 

c, = xq3/4. 

(3 + 2 J 5 ) c 1  
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For finite U, we have numerically solved equations (29) and (3.2) for several 
values of temperatures starting &om the initial values determined by equation (3.3). 
Higher order derivatives y(") (n 2 3) can be evaluated in the same manner. In 
this paper w estimated y(rr)(u, 1) up to n = 5 by numerical differentiation from a 
kuowledge of y(u, t ) ,  y'(u, d), and y"(u, t )  for several values of 1 (see the appendix 
for details). 
With the use of these derivatives y(")(u,l) we can now extend our solutions 

below T,. Our results suggest that even and odd higher derivatives have negative and 
positive signs, respectively. It then follows that higher order terms in equation (3.1) 
for t > 1 cancel with each other and the convergence b good. In contrast, for 
t < 1, all the higher order terms contribute additively and the convergence of equa- 
tion (3.1) is comparatively slow, especially as we approach the ground state. 'Ib see 
the behaviour of y(u,t) for 1 < 1, we evaluate equation (3.1) up to the fifth order 
for 9 = 0.3. As long as y is very small, we found that it is already a very good 
approximation. We show in figure 2, the ddependence of y(a, t )  for several values 
of z = uz. Rom the figure, we see a clear upturn in behaviour as t decreases. 

1. 0 

0,o- 
0. 0 0. I 0 .  8 1. 2 1. 6 

f 

Figure 2 B m p t u r r  dependena of y ( a ,  t )  below T, alrapalated from the para- 
magnetic solutions for wera l  values of a2 and 0 = 0.3. 

As for the ground state (1 = 0), the general solution of quation (2.9) is simply 
obtained as follows if we a m m e  Z( y) = y justilied for small y (hereafter we assume 
this relation for the ease of comparison with the analytic expression): 

where is an arbitrary constant determined from the initial condition. In our pre- 
ceding paper pkahashi  1986), we assumed E = 0 considering that othenvise equa- 
tion (3.7) will give a divergent y as n + 0. Equation (3.7) then gives the solution 
U = 1 at T = 0 K, which justifies equation (2.10) for lhe saturation magnetization 
in the ground state. It is easy to see that a free energy corresponding to the negative 
E is higher than the free energy with E = 0. On the other hand, although positive 
E gives the lower free energy, it does not give a stable inhimum value. In figure 3, 
y(u, t) plotted against z in the ground state is shown. The figure shows the upward 
deviation of calculated y(u,O) from y,(o,O) = 2 c ( ~ ' ) ~ ( z  - l), showing of the 
solution constructed by equation (3.1) is finite. We further found that we can fit the 
calculated y(u,O) with equation (3.7) by assuming E = 4~(17*)~/3  (see figure 3). 
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Figure 3. gdependena d the ground-slate mlution, v(u,O) tor q = 0.3: a, with 
( = 4c(q*)'/3; b, with E = (3/5)a54c(q')4/3; and c, with = 0. Open circles are 
waluated L y  equalion (3.1) up U) the Bflh d e r  h m  lhe paramagnetic solulions. 

This value of .$ is very large and we cannot satisfy the condition y(a,O) = 0 for any 
finite value of U.  It corresponds to the condition y = y, at t = 0 and U = 1. 

4. Magnetization below Tc 

The general solution of our first-order differential equation contains a parameter 
which generally depends on temperature. We have so far implicitly assumed that this 
constant b analytic with respect to the finite reduced temperature 1. Therefore the 
parameter E in equation (3.7) in the ground state, for example, would be uniquely 
determined. However what we found in section 3 b simple analytic continuation of 
the paramagne5c solutions with respect to the temperature at finite U does not lead 
to a fawxrable solution at low temperature. This finding is very interesting but our 
problem still remains unsolved. From the stability condition of the &ee energy, we can 
anyway r,%trict the range of U. For example, in the ground state, by differentiating 
equation (3.7) with respect to U,  we 6nd the minimum value of y(u,O) for a given 
positive value of E :  

In order to satkfy y = 0, we must have gmin 6 0, and we obtain the condition: 

112 

U >  (:) ~ 0 . 7 7 4 5 9  .... (4.2) 
(3)6'* 4C(Q')4 

3 € <  5 

This condition can be easily generalized for the case of finite temperatures. We see 
that condition (4.2) corresponds to the free-energy stability requirement, the positive 
curvature of the free energy. In other words, we have the following condition: 
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a y l a x  > 0 for y = 0 ,  or from equation (29) we have 

u'(t) < U at y = 0 

Cl = l ; T 1 I s  d r  s3{10g z3 - +r3 - $(r3)} .  (4.3) 

In order to determine the unique solution, we particularly note the fact that if 
we know the udependence of y(u , t ) ,  we can wnstruct bee energy as a function 
of U by using the relation y = h / u  and integrating h with respect to U. For each 
initial condition, we can thus 6nd the corresponding bee energy as a function of U. 
If we m u m e  y = y o  at x = xo,  we can, in principle, evaluate any higher derivatives 
a " y / a z "  (z = ua) with the use of equation (29). Rom the thermodynamic relation 
of the normalized bee energy af (u , t ) /au  = h, we see that f(a,l) is related to y 
bY 

k t  the U dependence of f (u,  t) be expanded around U = U,, = 6: 

(4-5) f ( a , t ) = f o + f i ( ~ - - , , ) +  - ( u - u ~ ) ~ + - ( u - u ~ ) ~ + . . .  f2 f3 
2 3 

then coefficients f,, are given by 

In these expressions, a n y / i 3 x n  stands for the derivative of y at x = x0. We 
cannot solve equation (2.9) beyond the stable solution with y 2 0 since we have to 
deal with the fluctuation amplitudes for negative y .  However, from equation (4.5) 
we can analytically extend our solution to the unstable region. In order to determine 
xo, we now assume a f / a u  = 0 at the origin U = 0, expecting the u2dependence 
of the free energy there. Then by introducing g ( z o , t )  by 

g ( x o , t )  = -q = yo - fz + f 3 f i -  fqxo + ... 
U0 o=o 

(4.7) 

it follows that the zero of g ( x , t )  determines xo. Up to the fourth derivative of 
f(u, t), g is explicitly given by 

z a 2 Y  4 3 a 3 ~  g ( 2 , t )  = -2x - - -a - 
a x z  3 ax3 
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As a simple example, we see f" equation (2.9) that g(x) in the ground state 
(t = 0 )  is given by 

Rom equation (4.9), we easily see that the squared magnetization I,, for finite yo is 
given by xo = 1 +y0/2c(17')4, which is equivalent to = o in equation (3.7). For an 
illustration of this procedure at finite temperature, we plot g(+ ,1 )  in equation (4.8) 
as a function of x for various temperatures t for q = 0.3 and y,,/2~(1)*)~ = 0.05 
in figure 4. For a given temperature t, we evaluate xo from the zero of g(x, t ) .  The 
result is shown in figure 5 as curve a We show $dependence of u2 in figure 6 It 
should he ~ t e d  that the finite yo is necessary at finite temperatures. If y = 0,  we 
cannot define derivatives, a n y / ~ z " ,  for n > 1 because P T ( y ) / a y "  diverge as 
y -+ 0. Care must he taken here that curve a in figures 5 and 6 is the magnetization 
under the static extemal magnetic field, and this is the reason curve a exceeds one 
at low temperature. By solving equation (29) starting from xo on curve a, we can 
obtain the squared saturation magnetization I at y = 0. The result is shown as curve 
b in figure 5. The magnetization process for the bigher external magnetic field is 
calculated in the same way. 

-201 

+re 4 =dependence of the hunaion g ( z ,  t )  defined in equation (4.8) in the ten for 
so = 0.05 x ~ 4 ~ * ) 4 .  

Near the critical temperature, it is hard to determine the precise value of the 
magnetization at y = 0 using this method. In our scheme, we fust estimate the 
zero of g(x,t) corresponding to the finite y. Then we solve equation (2.9) to 
obtain the value of I for y = 0. As we approach to the critical point, we need an 
increasingly more accurate value of I,, because a slight difference in 5 for finite y 
results in a large difference in x as y decreases. This circumstance is clearly seen if 
we solve equation (2.9) starting &om various initial conditions as shown in figure 7 
for t = 0.95, for example. From the figure we see that solutions starting b m  
different values of z0 at y = 0 rapidly converge to nearly the same value of y as y 
increases. The reason that the I value for y = 0 becomes smaller than the stability 
Limit, u'(t)2. around t = 0.93, as shown in figure 7, seems to come from the fact 
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a 

ao an a5 1.0 t 
5. Emperature dependence of he Wuraticn magnetization, a. The CUIV~F a 

and a' mrrespond to the zem of g ( z ,  t )  for go/Zc(?*)' = 0.05 and 0.01, respectively. 
Cum b is obtained by solving equation p9) staning f" the point (EO, yo) of curve a. 

Figun 6 'Bmpelatue dependence of the squared saturation magnetization, oz. Cums 
a and b m m p n d  to the zero of g ( z ,  t )  for y0/2c(q' ) '  = 0.05 and 0.01, respectively. 
Ihe tmken awe represents the stability condition, ~ ' ( l ) ~ ,  of the free energy given io 
equation (4.3). 

that the zero of equation (4.8) slightly underestimates the value of z,,. From the 
behaviour of the ratio, zo/u*(t)2, for d < 0.9, we expect the precise value of z0 to 
behave as I,, y_ 1.5 x ~ * ( t ) ~  for 1 - 1. 

This difficulty around the critical pint, however, does not seem to be serious 
for comparison with experiments from the following reason. Experimentally it is also 
very difficult to measure the temperature dependence of the saturation magnetization 
of weak itinerant ferromagnets especially around the critical region. Magnetization 
at zero-field is determined by extrapolating the Arrott plot ( M 2 - H / M  plot) to the 
H I M  = 0 limit. This b only justified when the linearity of the plot b good. How- 
ever, because we expect the behaviour y cx z2 near the critical point, we cannot 
determine the precise magnetization from this extrapolation procedure. The mag 
netization process around small y and CJ region is also very sensitive to the sample 
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X 

a0 ao 0005 y a0 

F@re 7. Dependence of lhe magnelimtion proars on the inilia1 mndilim for t = 0.95. 
cluvep a, b and e represent mlutions of equation (2.9) starling from z /o ' ( t ) *  = 1.2, 
IS and 1.8, mspeaivcly at y = 0. 

quality. Therefore the reliable quantity to be observed experimentally h the magneti- 
zation under the finite external field. If comparison is made at finite y, the problem 
of the sensitive initial condition is not so serious. (3urve a' in figure 5 shows the 
ldependence of Q for smaller y value, ~, , /Zc(q*)~ = 0.01. We can use curve a' as 
an approximate solution under a k i t e  extemal field. The solution of equation (2.9) 
passing through this point does not cross the y = 0 line because of the slight relative 
error of I at finite y. 

As shown earlier we can evaluate the magnetization curve starting from various 
initial conditions. Most of these states are not true stable states, and they real- 
ized when various relaxation processes to lower energy states are for some reason 
prohibited. The effect of the presence of solutions with various initial conditions is 
particularly conspicuous around the critical region of the appearance of ferromag- 
netism, where we have y - 0 around T = 0 K and various relaxation processes 
become ineffective. A slight difference in the initial condition appears in a magni- 
fied form at low temperature. All the solutions, however, asymptotically tend to the 
unique lowest energV solution as we increase the magnetization by applying the exter- 
nal magnetic field. This behaviour is clearly seen in the ground state, equation (3.7): 
as we increases U, y(u,O) approaches the unique solution y ( ~ , 0 )  = Z ~ ( q * ) ~ ( a * - l )  
irrespective of our choice of value. 

5. Conclusions 

In the present paper, we discussed the ordered phase properties of itinerant electron 
ferromagnets. We fust discussed the problem by straightforward analytic continuation 
of paramagnetic solutions with respect to the temperature. We found that these 
solutions do not directly continue to the stable solutions below T,. Based on this fact 
we pointed out a possibility that solutions with various initial conditions are actually 
realized in the ordered phase. We then proposed a method by which to find the most 
stable state among these states. All the other solutions, although they have different 
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magnetizations f o r  the weak external field, tend to the unique stable solution as we 
increase the magnetization by applying an external magnetic field. 

We emphasize the importance of the degrees of freedom concerning the initial 
condition. Even if we fix the equation, 'Iye are still left with a choice of initial 
conditions. We would like to point out here a possibility that the existence of solutions 
with various initial conditions is related to the metamagnetic behaviour associated 
with the peculiar form of the Arrott plot at low temperature widely observed in 
nearly ferromagnetic materials around their critical concentration of the occurrence 
of the ferromagnetism such as TiBe, (Acker er a1 1981) and Y(cO-AI), (Sakakibara 
et d ). In these compounds the longitudinal magnetic susceptibility shows divergent 
behaviour at some field strength around the metamagnetic transition. If we solve 
equation (29) starting from a slightly smaller value of I than the precise one towards 
smaller I, the solution will become unstable (Le. y, = 0 )  beyond a certain I value 
near the aitical temperature (y = 0).  If we interchange I- and y-axes in figure 3, 
curve a looks like an observed peculiar behaviour. Because we need y = 0 around 
T = 0 K from the earlier argument, we only expect metamagnetic behaviour just 
around the critical concentration of the ferromagnetism. 

Our approach shows a clear contrast with conventional approaches based on the 
expansion in terms of the small magnetization or small spin fluctuation amplitudes. 
We usually assume the linearity of the Arrott plot as given from the beginning. The 
slope of the plot is an independent parameter related to the curvature of the electronic 
density of states at the Fermi level. On the other hand, our approach is based on 
an equation for the transverse magnetic susceptibility and the Arrott plot is obtained 
as a consequence of the theory. The slope of the Arrott plot is determined instead 
from the nature of spin fluctuation spectrum in q,w space. The spin fluctuation 
spectrum determines all the magnetic properties. In this sense our approach is more 
like the situation in the localized moment limit where all the magnetic properties are 
characterized by the parameter of the spin Hamiltonian. The difference lies in the 
energy scale of the spin fluctuation spectrum and the existence of the large zero-point 
spin fluctuation amplitude, which are new characteristic features of itinerant electron 
magnets. 

Appendix. A numerical method to evaluate higher derivatives of y 

Instead of directly evaluating higher derivatives y(" ) (u ,  1) for 3 Q n, we numerically 
evaluate them from the values of Y ( ~ ) ( O , ~ )  evaluated at several values of 1. For a 
given function f(1), let us define following functions: 

4 f ( l +  h / 2 )  - f(1 + h)  - 3 f ( l )  
h F ( h )  = 

8 f ( l +  h / 4 )  - 6 f ( l  + h / 2 )  + f ( 1  + h )  - 3 f ( l )  
h3/16 

H ( h )  = 

Then the derivatives of f (t)  at t = 1 can be estimated by 
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-- h3 f ( 5 ) ( 1 ) + . . .  6G(h/2) - G(h) - 8 G ( h / 4 )  
3 256 

f“(1) = 

7h2 
512 

f@’(l) = 2 H ( h / 2 )  - H(h) + -f(4)(l) + ... . 

In this paper we have estimated Y ( ~ ) ,  y(4) and y(5) from this formula by assuming 
f(t) = y ” ( u , t )  and h = f for y@) and Y ( ~ ) ,  and h = for y@). We suppose that 
relative accuracy will be maintained. We have checked the validity of the results by 
evaluating summation (3.1) up to the fifth order and comparing it with the value of 
y( U, 2) directly obtained by solving equation (29). 
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